1177000000=(0.07x^2)+(47.4x)+500

Simple and best practice solution for 1177000000=(0.07x^2)+(47.4x)+500 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1177000000=(0.07x^2)+(47.4x)+500 equation:


Simplifying
1177000000 = (0.07x2) + (47.4x) + 500

Reorder the terms:
1177000000 = 500 + (47.4x) + (0.07x2)

Solving
1177000000 = 500 + (47.4x) + (0.07x2)

Solving for variable 'x'.

Combine like terms: 1177000000 + -500 = 1176999500
1176999500 + (-47.4x) + (-0.07x2) = 500 + (47.4x) + (0.07x2) + -500 + (-47.4x) + (-0.07x2)

Reorder the terms:
1176999500 + (-47.4x) + (-0.07x2) = 500 + -500 + (47.4x) + (-47.4x) + (0.07x2) + (-0.07x2)

Combine like terms: 500 + -500 = 0
1176999500 + (-47.4x) + (-0.07x2) = 0 + (47.4x) + (-47.4x) + (0.07x2) + (-0.07x2)
1176999500 + (-47.4x) + (-0.07x2) = (47.4x) + (-47.4x) + (0.07x2) + (-0.07x2)

Combine like terms: (47.4x) + (-47.4x) = 0.0
1176999500 + (-47.4x) + (-0.07x2) = 0.0 + (0.07x2) + (-0.07x2)
1176999500 + (-47.4x) + (-0.07x2) = (0.07x2) + (-0.07x2)

Combine like terms: (0.07x2) + (-0.07x2) = 0.00
1176999500 + (-47.4x) + (-0.07x2) = 0.00

Begin completing the square.  Divide all terms by
-0.07 the coefficient of the squared term: 

Divide each side by '-0.07'.
-16814278570 + (677.1428571x) + x2 = 0

Move the constant term to the right:

Add '16814278570' to each side of the equation.
-16814278570 + (677.1428571x) + 16814278570 + x2 = 0 + 16814278570

Reorder the terms:
-16814278570 + 16814278570 + (677.1428571x) + x2 = 0 + 16814278570

Combine like terms: -16814278570 + 16814278570 = 0
0 + (677.1428571x) + x2 = 0 + 16814278570
(677.1428571x) + x2 = 0 + 16814278570

Combine like terms: 0 + 16814278570 = 16814278570
(677.1428571x) + x2 = 16814278570

The x term is (677.1428571x).  Take half its coefficient (338.5714286).
Square it (114630.6123) and add it to both sides.

Add '114630.6123' to each side of the equation.
(677.1428571x) + 114630.6123 + x2 = 16814278570 + 114630.6123

Reorder the terms:
114630.6123 + (677.1428571x) + x2 = 16814278570 + 114630.6123

Combine like terms: 16814278570 + 114630.6123 = 16814393200.6123
114630.6123 + (677.1428571x) + x2 = 16814393200.6123

Factor a perfect square on the left side:
((x) + 338.5714286)((x) + 338.5714286) = 16814393200.6123

Calculate the square root of the right side: 129670.325057865

Break this problem into two subproblems by setting 
((x) + 338.5714286) equal to 129670.325057865 and -129670.325057865.

Subproblem 1

(x) + 338.5714286 = 129670.325057865 Simplifying (x) + 338.5714286 = 129670.325057865 x + 338.5714286 = 129670.325057865 Reorder the terms: 338.5714286 + x = 129670.325057865 Solving 338.5714286 + x = 129670.325057865 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-338.5714286' to each side of the equation. 338.5714286 + -338.5714286 + x = 129670.325057865 + -338.5714286 Combine like terms: 338.5714286 + -338.5714286 = 0.0000000 0.0000000 + x = 129670.325057865 + -338.5714286 x = 129670.325057865 + -338.5714286 Combine like terms: 129670.325057865 + -338.5714286 = 129331.753629265 x = 129331.753629265 Simplifying x = 129331.753629265

Subproblem 2

(x) + 338.5714286 = -129670.325057865 Simplifying (x) + 338.5714286 = -129670.325057865 x + 338.5714286 = -129670.325057865 Reorder the terms: 338.5714286 + x = -129670.325057865 Solving 338.5714286 + x = -129670.325057865 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-338.5714286' to each side of the equation. 338.5714286 + -338.5714286 + x = -129670.325057865 + -338.5714286 Combine like terms: 338.5714286 + -338.5714286 = 0.0000000 0.0000000 + x = -129670.325057865 + -338.5714286 x = -129670.325057865 + -338.5714286 Combine like terms: -129670.325057865 + -338.5714286 = -130008.896486465 x = -130008.896486465 Simplifying x = -130008.896486465

Solution

The solution to the problem is based on the solutions from the subproblems. x = {129331.753629265, -130008.896486465}

See similar equations:

| 3x+17+2x+8=180 | | 3(3m+5)=3(6m+5) | | 9(-3+4)-16=3+2(x-6) | | t/3=-2 | | 26-8x-3x+4=-7+5+3x-3 | | 42-3(5-2x)=(x+8)+19 | | 30000-12.5x=0 | | 3x+17+5y+15=180 | | -5=-12+n | | 7/3x-2(0)=-14 | | 0=5t+5 | | -12=8u-12 | | (x+4/-2x^2+32) | | 1/2n+1/3n=7 | | 6w^2-43w+7= | | 7(x+12)=10(x-15) | | 6(0)-2y=10 | | (X-3)(x+8)=7x | | 6(x+2)-3(4x-7)+10x= | | 13-5=3(3d+7) | | 4z+3=5 | | (3x-5)=(5x-7) | | [2x-4]=6 | | -40=y-57 | | 1/7x=35 | | 9.6=u/6 | | -6x+7(3x+9)=198 | | -x/5=(-25) | | 76=4x*x+3 | | -20(1/4)=x | | 46=q-7 | | 7*x=1/7 |

Equations solver categories